Pd/WO₃-ZrO₂ as an Efficient Catalyst for the Selective Oxidation of Ethylene to Acetic Acid in the Vapor Phase

Wenling Chu,[†] Yasunobu Ooka,^{††} Yuichi Kamiya,^{††} Toshio Okuhara,^{*††} and Hideshi Hattori^{†††}

[†]On leave from State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, P. R. China

^{††}Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810

^{†††}Emeritus Professor of Hokkaido University

(Received February 2, 2005; CL-050149)

Pd supported on WO_3 –Zr O_2 calcined at temperatures of 973–1073 K exhibits a high activity and selectivity for the oxidation of ethylene to acetic acid in the vapor phase. The space time yield (STY) per unit volume of catalyst is higher for Pd/WO₃–ZrO₂ than for Pd/H₄SiW₁₂O₄₀–SiO₂, the best catalyst reported to date.

Recently, it was reported that a catalyst composed of Pd and a heteropoly acid exhibited a high yield of acetic acid in the onestep gas-phase oxidation of ethylene.¹ Among the heteropoly acids, silicotungstic acid ($H_4SiW_{12}O_{40}$) exhibited the highest space time yield (STY) of acetic acid. Sano et al. suggested that the acidic nature of $H_4SiW_{12}O_{40}$ contributed to its high activity in the oxidation of ethylene.¹ They also reported that the addition of Se and Te to the catalyst increased the STY of acetic acid, due to the suppression of CO₂ formation.¹ A plant for the production of acetic acid based on the catalyst Pd/H₄SiW₁₂O₄₀–SiO₂ was commercialized in 1998. In the present publication we present Pd/WO₃–ZrO₂ as an efficient catalyst for the production of acetic acid from ethylene. Pd/WO₃–ZrO₂ is a more efficient catalyst than a number of other catalysts, including Pd/ H₄SiW₁₂O₄₀–SiO₂.

 WO_3 -ZrO₂ with different W/Zr ratios was prepared by an incipient wetness method from an aqueous solution (16 mmol dm⁻³) of (NH₄)₁₀W₁₂O₄₁ (Wako Chemical Co.) and Zr(OH)₄ (Dai-ich Kigenso Kagaku Kogyo Ltd., dried overnight at 373 K).² The resulting solid was dried at 373 K and calcined at a pre-determined temperature for 3 h, with the temperature being gradually increased at a rate of 10 K min⁻¹. Pd/WO₃-ZrO₂ was prepared by the impregnation of WO₃-ZrO₂ with an aqueous so-

lution (40 mmol dm⁻³) of PdCl₂·H₂O (Wako Chemical Co.) The Pd loading was adjusted to 1.0 wt %. After drying at 373 K, the resulting solid was calcined at 673 K for 5 h, with the temperature being raised at a rate of 2 K min⁻¹. 1.5 wt % Pd/40 wt % H₄SiW₁₂O₄₀–SiO₂ was prepared by impregnation according to a method described previously.³ The solid was calcined at 523 K in air for 5 h. Cs_{2.5}H_{0.5}PW₁₂O₄₀ and MoO₃–ZrO₂ (Mo/Zr = 0.2, calcined at 1073 K) were prepared according to literature procedures.^{4,5} SiO₂–Al₂O₃ (JRC-SAL-2), H- β (Zeolist, Si/Al = 12.5), H–mordenite (Zeolist, Si/Al = 10) were used after calcination at 773 K. Nb₂O₅ (CBMM, HY-340) calcined at 573 K was also used. Pd was loaded onto these supports by the method described for Pd/WO₃–ZrO₂.

The oxidation of ethylene was performed in a fixed-bed flow reactor (stainless steel SUS 317, 10 mm inside diameter). Catalyst (2 cm³, 60–80 mesh) was placed in the reactor and pretreated at 573 K for 1 h under a stream of H₂–He (1:1 mixture) at a flow rate of 60 cm³ min⁻¹. After cooling under the He flow to a reaction temperature of 423 K, a mixture of the reactant gas $(C_2H_4:O_2:H_2O:He = 50:7:30:13 \text{ in vol. }\%)$ was fed into the reactor at a total flow rate of 100 cm³ min⁻¹ (SV = 3000 h⁻¹) and total pressure of 0.6 MPa. The effluent gas was introduced to a trap kept at 200 K in order to collect the liquefied products. The liquefied components were analyzed by gas chromatography (Simadzu 8A, FID with Porapak QS column). The gaseous products passing through the trap were directly injected into a gas chromatograph (Aera, Micro GC M200).

The results of catalytic reactions with different types of catalysts are summarized in Table 1. It is noted that Pd/WO_3-ZrO_2 gave the highest STY of acetic acid per unit volume of catalyst. In addition, Pd/WO_3-ZrO_2 exhibited high selectivity for acetic

Table	1.	Cataly	tic	data	for	oas-	nhase	oxidation	of	ethy	lene	over	various	catal	vsts
Lanc		Cutury	uc	uuuu	101	Sus	phuse	OAldullon	O1	cury	Terre	0,01	various	cutui	yous

Catalystb	STY of AcOH ^c		Conversion			
Catalyst	$/mol h^{-1} dm^{-3} (mol h^{-1} kg^{-1})$	AcOH ^d	H ^d AcH ^d EtOH ^d		CO_x	of $O_2/\%$
Pd/WO ₃ -ZrO ₂ ^e	1.21 (0.69)	74	8	0	18	32
Pd–Te/WO ₃ –ZrO ₂ ^f	0.91 (0.56)	81	10	0	9	27
$Pd/H_4SiW_{12}O_{40}SiO_2{}^g$	0.69 (0.90)	55	15	10	20	21
Pd/Cs _{2.5} H _{0.5} PW ₁₂ O ₄₀	0.44 (0.21)	17	7	15	61	68
Pd/MoO ₃ -ZrO ₂ ^h	0.42 (0.26)	36	19	0	45	25
Pd/SiO ₂ -Al ₂ O ₃	0.03 (0.06)	29	43	0	28	5
$Pd/H-\beta^{i}$	0.02 (0.05)	38	10	4	48	6
Pd/H-mordenite ^j	0.01 (0.01)	22	18	4	56	4
Pd/Nb ₂ O ₅	0.03 (0.03)	24	52	1	23	4

^aReaction conditions: $C_2H_4:O_2:H_2O:He = 50:7:30:13$, GHSV = $3000 h^{-1}$, temperature 423 K, and pressure 0.6 MPa. The data was collected at 3 h. ^bLoading amount of Pd was 1.0 wt % except for 1.5 wt %Pd/40 wt %H_4SiW_{12}O_{40}-SiO_2; ^cSpace time yield of acetic acid; ^dAcOH: acetic acid, AcH: acetaldehyde, EtOH: ethanol; ^eW/Zr = 0.2 and calcined at 1073 K; ^fTe/Pd atomic ratio was 0.1; ^g1.5 wt %Pd/40 wt %H_4SiW_{12}O_{40}-SiO_2; ^hMo/Zr = 0.2 and calcined at 1073 K; ⁱSi/Al = 10.

acid among the catalysts examined. As reported by Sano et al.,¹ although $Pd/H_4SiW_{12}O_{40}$ –SiO₂ was a highly active catalyst for the reaction, its selectivity for acetic acid was moderate. Thus, Table 1 demonstrates that Pd/WO_3 –ZrO₂ has potential for practical use. As a matter of fact, the addition of Te to Pd/WO_3 –ZrO₂ greatly enhanced its selectivity for acetic acid, producing 81% acetic acid and 10% acetaldehyde. Time courses for this reaction over Pd/WO_3 –ZrO₂ and $Pd/H_4SiW_{12}O_{40}$ –SiO₂ showed that changes in the activity and selectivity were small for a period up to at least 9 h for both catalysts.

 $Pd/Cs_{2.5}H_{0.5}PW_{12}O_{40}$ and Pd/MoO_3 – ZrO_2 also exhibited high activities, comparable to that of $Pd/H_4SiW_{12}O_{40}$ – SiO_2 , however the selectivity of this catalyst was very low. Both Pd/ H- β and Pd/H-mordenite were less active and less selective. Pd/SiO₂–Al₂O₃ and Pd/Nb₂O₅ were inferior to the other catalysts.

To optimize the conditions for Pd/WO₃–ZrO₂, the effect of the Pd starting material, the Pd loading, the calcination temperature of the WO₃–ZrO₂ support, the W/Zr ratio and the pretreatment of Pd/WO₃–ZrO₂ (calcination and reduction temperatures) were investigated. The Pd starting material affected the catalytic activity of the resulting catalysts. The catalyst prepared using PdCl₂ exhibited a higher STY than those prepared using (NH₄)₂PdCl₄ and Pd(NO₃)₂. In particular, the use of the latter two catalysts generated significant amount of CO₂. PdCl₂ is therefore the preferred source of Pd. Although the Pd loading did not greatly affect the STY, the catalyst loaded with 1 wt % Pd showed the highest STY.

Figure 1. Effect of calcination temperature of WO₃–ZrO₂ on STY of acetic acid and selectivity for oxidation of ethylene over 1 wt %Pd/WO₃–ZrO₂(W/Zr = 0.2). (•) STY and selectivity to (\triangle) acetic acid, (\diamond) acetaldehyde, and (\Box) CO₂.

Figure 1 shows the influence of the calcination temperature of the WO_3 – ZrO_2 support on the activity and selectivity. The optimum temperatures were 1073 K for the greatest selectivity for acetic acid and 973 K for the highest activity. It is remarkable that the selectivity for acetic acid increases instead of decrease of the selectivity for acetaldehyde as the calcination temperature increased. The surface area of the catalyst decreased monotonically as the calcination temperature increased (124, 109, 82, and $72 \text{ m}^2 \text{ g}^{-1}$ for 773, 873, 973, and 1073 K, respectively). Thus, the observed change in activity (Figure 1) probably relates to the change in acidity of WO_3 – ZrO_2 , since the activities for acid-catalyzed reactions were higher at higher WO_3 – ZrO_2 calcination temperatures.^{6,7}

Figure 2 shows effect of the W/Zr atomic ratio on the STY

Figure 2. Effect of atomic ratio of W/Zr for WO₃–ZrO₂ on STY of acetic acid and selectivity for oxidation of ethylene over $1 \text{ wt }\%\text{Pd/WO_3}$ –ZrO₂. WO₃–ZrO₂ was calcined at 1073 K. (•) STY and selectivity to (\triangle) acetic acid, (\diamond) acetaldehyde, and (\Box) CO₂.

and selectivity. Pd/WO₃-ZrO₂ exhibited the highest STY with W/Zr = 0.2 and the highest selectivity for acetic acid with W/Zr = 0.05. The surface areas of WO_3 - ZrO_2 were measured to be 46, 72, 63, 61, and $45 \text{ m}^2 \text{ g}^{-1}$ for 0.05, 0.1, 0.2, 0.3, and 0.4 of W/Zr ratio, respectively. The surface densities of WO_3 were 5.1, 5.7, 11.2, 15.4, and 24.8 W-atom nm^{-2} for 0.05, 0.1, 0.2, 0.3, and 0.4 of W/Zr ratio, respectively, calculated using the surface areas and the W/Zr loadings. Since, in theory, 7 W-atom nm^{-2} is just sufficient to cover the ZrO₂ surface with a monolaver WO_3 ⁸ it is considered that monolaver WO_3 species and/or three-dimensional WO₃ clusters⁹ would be formed on Pd/WO₃-ZrO₂ with the W/Zr range of 0.05-0.3, the catalysts which showed the high STY and high selectivity for acetic acid. Since WO₃-ZrO₂ with a WO₃-surface density of 7-15 W-atom nm⁻² shows the highest activity for acid catalyzed reactions such as the benzoylation of toluene,⁶ and isomerizations of pentane⁶ and o-xylene,⁷ acidity of WO₃-ZrO₂ would much contribute to the formation of the active sites. From contact time dependencies and indispensableness of water to the reaction we have previously demonstrated that ethylene is oxidized to acetaldehyde over Pd/WO₃-ZrO₂ through a Wacker-type reaction, with acetaldehyde being further oxidized to acetic acid.¹⁰ Considering the similarity to the Wacker oxidation using homogeneous PdCl₂-CuCl₂ catalyst, the acidity of WO₃-ZrO₂ thus may play an important role in forming active sites such as Pd²⁺.¹⁰

This work was supported by Core Research for Evolution Science and Technology (CREST) of the Japan Science and Technology Corporation (JST).

References

- K. Sano, H. Uchida, and S. Wakabayashi, Catal. Surv. Jpn., 3, 55 (1999).
- 2 W. Chu, T. Echizen, Y. Kamiya, and T. Okuhara, *Appl. Catal.*, A, 259, 199 (2004).
- 3 A. Miyaji, T. Echizen, K. Nagata, Y. Yoshinaga, and T. Okuhara, J. Mol. Catal. A: Chem., 201, 145 (2003).
- 4 T. Okuhara, T. Nishimura, and M. Misono, J. Mol. Catal., 74, 247 (1992).
- 5 L. Li, Y. Yoshinaga, and T. Okuhara, *Phys. Chem. Chem. Phys.*, 1, 4913 (1999).
- 6 M. Hino and K. Arata, J. Chem. Soc., Chem. Commun., 1988, 1259.
- 7 D. G. Barton, S. L. Soled, G. D. Meitzner, G. A. Fuentes, and E. Iglesia, J. Catal., 181, 57 (1999).
- 8 K. C. Pratt, J. V. Sanders, and V. Christov, J. Catal., 124, 416 (1990).
- 9 A. Satsuma, H. Yokoi, H. Nishiyama, S. Kakimoto, S. Sugaya, T. Oshima, and T. Hattori, *Chem. Lett.*, 33, 1250 (2004).
- 10 W. Chu, Y. Ooka, Y. Kamiya, and T. Okuhara, Catal. Lett., in press.